Energy Consumption Patterns and Load Forecasting with Profiled CNN-LSTM Networks
نویسندگان
چکیده
By virtue of the steady societal shift to use smart technologies built on increasingly popular grid framework, we have noticed an increase in need analyze household electricity consumption at individual level. In order work efficiently, these rely load forecasting optimize operations that are related energy (such as appliance scheduling). This paper proposes a novel method utilizes clustering step prior group together days exhibit similar patterns. Following that, attempt classify new into pre-generated clusters by making available context information (day week, month, predicted weather). Finally, using historical data (with regard consumption) alongside meteorological and temporal variables, train CNN-LSTM model per-cluster basis specializes based profiles present within each cluster. leads improvements performance (upwards 10% mean absolute percentage error scores) provides us with added benefit being able easily highlight extract allows identify which external variables effect any household.
منابع مشابه
Neural Networks in Forecasting Electrical Energy Consumption
This paper presents an artificial neural network (ANN) approach to electric energy consumption (EEC) forecasting. In order provide the forecasted energy consumption, the ANN interpolates between the EEC and its determinants in a training data set. In this study, two ANN models are presented and implemented on real EEC data. The first model is a univariate model based on past consumption values....
متن کاملeconomic optimization and energy consumption in tray dryers
دراین پروژه به بررسی مدل سازی خشک کردن مواد غذایی با استفاده از هوای خشک در خشک کن آزمایشگاهی نوع سینی دار پرداخته شده است. برای آنالیز انتقال رطوبت در طی خشک شدن به طریق جابجایی، یک مدل لایه نازک برای انتقال رطوبت، مبتنی بر معادله نفوذ فیک در نظر گفته شده است که شامل انتقال همزمان جرم و انرژی بین فاز جامد و گاز می باشد. پروفایل دما و رطوبت برای سه نوع ماده غذایی شامل سیب زمینی، سیب و موز در طی...
15 صفحه اولEfficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks
Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...
متن کاملShort-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation
Accurate load forecasting is an important issue for the reliable and efficient operation of a power system. This study presents a hybrid algorithm that combines similar days (SD) selection, empirical mode decomposition (EMD), and long short-term memory (LSTM) neural networks to construct a prediction model (i.e., SD-EMD-LSTM) for short-term load forecasting. The extreme gradient boosting-based ...
متن کاملConcurrent Activity Recognition with Multimodal CNN-LSTM Structure
We introduce a system that recognizes concurrent activities from real-world data captured by multiple sensors of different types. The recognition is achieved in two steps. First, we extract spatial and temporal features from the multimodal data. We feed each datatype into a convolutional neural network that extracts spatial features, followed by a long-short term memory network that extracts te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Processes
سال: 2021
ISSN: ['2227-9717']
DOI: https://doi.org/10.3390/pr9111870